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Abstract

We address the problem of thermal di�usion in binary ¯uid mixtures, lying within a porous medium and subjected to

a horizontal thermal gradient. Preliminary numerical results indicate that multiple convection-roll ¯ow patterns can

develop depending on the Soret number value, for counteracting thermal and solutal buoyancy forces. Investigating

solute behaviour, the in¯uence of these forces on solute transport is described in detail. Furthermore, it is shown that

the theory represents well the solute behaviour when solutal buoyancy force is negligible. Finally, reproducing thermo-

gravitational experiments by numerical means, dispersion is exhibited as a possible cause of the observed discrepancy

between numerical and experimental results. The in¯uence of dispersion on di�usive and thermal di�usive solute trans-

ports can be strong. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Thermal di�usion, also called solutal thermodi�usion

or the Soret e�ect [1], corresponds to species di�eren-

tiation, developing in an initially homogeneous mixture

submitted to a thermal gradient. Although usually

considered as a second-order phenomenon, the impor-

tance of thermal di�usion is becoming more widely ac-

cepted; examples are in geosciences when considering

magma di�erentiation [2±4], in hydrology when studying

mineral enrichment of geothermal sources [5,6] or, al-

though some disagree [9], in petrology when investigat-

ing hydrocarbon segregation [7,8].

Theoretical developments regarding solutal thermo-

di�usion have been achieved by Furry et al. [10] for bi-

nary mixtures, and more generally by De Groot [11] and

De Groot and Mazur [12] by means of irreversible

process thermodynamics. They exhibit the driving force

for the phenomenon, rT , and the governing coe�cient,

called thermal di�usion coe�cient, Dt. Compositional

gradients and species behaviour not only depend on the

existing temperature gradient, but also on Dt value (Dt

being speci®c to each mixture component).

Most studies carried out on this topic deal with bi-

nary mixtures. Soret number, St � Dt=D allowing the

comparison of ®ckian to thermal di�usion, is then often

used and measured instead of Dt. Usually, the mixture

heaviest component migrates to the cold side, and if the

mixture components are of the same mass, the larger

molecules migrate to the cold side [13]. The Soret

number is then positive. However, in some cases, the

component migrating towards the cold side is the lighter

one and the Soret number is negative.

Among the studies carried out to understand how the

Soret e�ect acts on heat transfer and mass transport in

binary mixtures, several con®gurations have been con-

sidered.

Many deal with mixtures in a strictly ¯uid cell (no

porous medium inside the cell) submitted to a vertical

thermal gradient with the cell bottom being the cell hot

side [14±17]. By means of stability analysis, the action of

thermal di�usion on bifurcations in B�enard convection

problems is determined. Hence, it has been shown
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[18,19] that a threshold value, S� < 0, exists for the Soret

number, St, such that: for St < S� oscillatory convection

develops, for St > S� steady convection occurs and

St � S� corresponds to a codimension two-point (Hopf

bifurcation). Zimmermann and M�uller [14] experimen-

tally visualise these ¯ow patterns and describe lean

component transport along streamlines within a moving

convection roll.

Other works consider thermal di�usion induced by a

horizontal thermal gradient (also in a strictly ¯uid cell)

[13,20,21]. Bergman and Srinivasan [20] numerically

describe the ¯ow patterns developing within a square-

shaped cell, and show that counteracting solutal and

thermal buoyancy forces (St < 0) often lead to heat

transfer dominated by conduction. Furthermore, they

show the importance of the Soret e�ect at low thermal

Rayleigh number, while Weaver and Viskanta [13] show

the importance of thermal di�usion on mass transfer in

general (10±15% of the total mass ¯ux).

Parallel to these, other studies are devoted to Soret

number calculation, either by means of molecular dy-

namics [22] or using experimental devices. In the latter,

Soret number can be evaluated either using optical ap-

paratus [23,24] or measuring species di�erentiation

within a thermal di�usion cell [25,26]. Originally used by

Clusius and Dickel [27,28], the thermogravitational dif-

fusion e�ect has been used in thermal di�usion cells

containing a porous medium to control convection. In

these devices the mixture is submitted to a horizontal

thermal gradient and results have been obtained for Soret

number of di�erent species in binary mixtures [6,29].

Hitherto, to the authors knowledge, thermogravita-

tion in binary mixtures has not been intensively inves-

tigated by numerical means, although the importance of

the Soret e�ect has been shown, as we have seen, in

many situations, and can be assumed in many others

(for example hydrocarbon segregation in oil or gas

®elds). Jamet et al. [30] attempted to numerically handle

this problem. However, plotting cell-bottom to cell-top

solute-concentration ratio versus the log of permeability,

they noted a discrepancy between numerical and

experimental results. Their study shows that a

Nomenclature

a reference thermal di�usivity

A transport parameter

B transport parameter

c concentration

C transport parameter

Cp heat capacity

D di�usion coe�cient

Dd di�usion±dispersion coe�cient

Dt thermal di�usion coe�cient

Dt
d thermal di�usion±dispersion coe�cient

Fs solutal buoyancy force

Ft thermal buoyancy force

H cell height

H transport parameter

HA � L=H cell aspect ratio

Ji mass ¯ux of species i

J c
i convective ¯ux of species i

J f
i di�usive ¯ux of species i

J s
i thermal di�usive ¯ux of species i

k permeability

K transport parameter

L cell length

Le Lewis number

mx solute mass transport along axis x

n cell-wall normal unit vector

ng unit vector along gravity direction

p pressure

q separation ratio

Ras solutal Rayleigh number

Rat thermal Rayleigh number

Sc Schmidt number

S� critical Soret number

S dimensionless Soret number

St dimensioned Soret number

t time

T temperature

V velocity

Greek symbols

a solutal expansion coe�cient

b thermal expansion coe�cient

k heat conductivity

/ porosity

q density

l dynamic viscosity

m cinematic viscosity

Subscripts

0 reference quantities

c cold

eq equivalent quantities

f ¯uid

h hot

i species (i � 1; 2)

m optimum

s solute

Superscripts

eq equivalent quantities

num numerical

� dimensioned quantities
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permeability anisotropy could not be responsible for this

discrepancy.

We are therefore numerically addressing the problem

of thermogravitation in binary ¯uid mixtures. Our goal

is to reproduce Soret number measurement experiments

and explain the discrepancy already observed between

numerical and experimental results [30]. First, a mathe-

matical description of the problem is given. Then, we

propose a ¯ow description, and a short heat transfer and

mass transport analysis, which will help in extracting

the parameters relevant to the maximum separation

obtained in thermogravitational cells. Finally, we aim to

reproduce some of the Soret number measurement

experiments done using thermogravitational cells [6] and

discuss the results obtained.

2. Problem formulation

Fig. 1 shows, schematically, the thermogravitational

cell under study. The walls are impermeable to matter.

The vertical walls are set to constant yet di�erent tem-

peratures, Th and Tc, while the top and bottom are

adiabatic walls. The binary mixture ®lling the cell po-

rous medium (permeability k, porosity /) is initially

homogeneous. Hence, due to the thermal gradient, ¯uid

undergoes convection and mixture species are submitted

to the Soret e�ect.

The governing equations for the problem follow. No

chemical reaction occurs between the species and no

interactive super®cial force acts between the porous

medium particles and the liquid mixture (capillary or

Marangoni forces are neglected). There must be con-

servation of the total mass (Eq. (1), assuming incom-

pressible ¯ow) and of each species i (Eq. (2)). Darcy's

law is valid for the ¯uid (Eq. (3)) and energy conserva-

tion is represented by Eq. (4). Furthermore, we consider

the following state law for the ¯uid: ¯uid density, q�f , is a

linear function of temperature, T �, and solute concen-

tration, c�s (Eq. (5))

r � V �f � 0; �1�

/
oq�i
ot�
� r � �q�i V �i � � 0; �2�

V �f � ÿ
k
l
�rp� ÿ q�f g�; �3�

�qCp��eq

oT �

ot�
� �qCp�f V �f rT � � r � �k�eqrT ��; �4�

q�f � qf0
�1ÿ b�T � ÿ T0� � a�c�s ÿ cs0

��: �5�

Subscript 0 denotes reference quantities evaluated at

mean temperature T0 � 0:5�Th � Tc�, subscript eq de-

notes equivalent quantities for the set solid±matrix/

mixture, and subscript f denotes quantities relative to

the mixture. a and b are the ¯uid phase solutal and

thermal expansion coe�cients, respectively.

Eq. (2) can be modi®ed to express conservation of

each species in terms of its concentration, c�i � q�i =q
�
f ,

noting that total ¯ux of species i (Ji � q�i V �i ) is due to a

convective ¯ux of i (J c
i � q�f c�i V �f ), a Fickian di�usive ¯ux

of i (J f
i � q�f D�irc�i ) and a thermal di�usive ¯ux of i

(J s
i � q�f Dt�

i c�irT �).
Hence, writing solute conservation within the cell

leads to Eq. (6), which is used instead of Eq. (2) (second

mixture-component concentration is equal to 1ÿ c�s ).

Note that solute Soret number, St, appears in this

equation

/
oc�s
ot�
� r � �c�s V �f � � r � �D�src�s � � r � �StD�s c�srT ��:

�6�
Boundary conditions are no ¯ow and no mass ¯ux

through the cell walls, constant temperature, Tc and Th,

on each of the vertical walls, and no heat ¯ux through

the horizontal walls.

Normalised equations are used (Eqs. (7)±(10),

the equation of state for the ¯uid being introduced in

Darcy's law)

r � Vf � 0; �7�

/
ocs

ot
�r � �csVf� � 1

Le
r � �Dsrcs� � 1

Le
r � �SDscsrT �;

�8�

Vf � ÿrp � Rat T ng ÿ Ras�cs ÿ 1�ng; �9�

n
oT
ot
� VfrT � r � �keqrT �; �10�

Fig. 1. Thermogravitational cell.
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where ng is the unit vector along axis x (see Fig. 1), and

n � �qCp�eq=�qCp�f . The unknowns are the following

dimensionless variables:

T � T � ÿ T0

Th ÿ Tc

; cs � c�s=cs0
; q � q�=q0;

V � H
a

V �; t � a
H 2

t�; p � q0a2

H 2
p�;

�11�

where superscript � denotes the dimensioned quantities

appearing in Eqs. (1)±(5) and a � keq
0 =�q0Cp�f is a ref-

erence thermal di�usivity. Distances are normalised

using H as the reference length, and other physical

parameters are normalised using their value at tem-

perature T0. The dimensionless parameters appearing in

Eqs. (7)±(10) follow:

Thermal Rayleigh number:

Rat � q0gbDTkH
la

;

Solutal Rayleigh number:

Ras � q0gac0kH
lDs0

;

Lewis number:

Le � a
Ds0

;

Normalised Soret number:

S � StDT ;

where DT � Th ÿ Tc and Ds0
is the solute di�usion

coe�cient at temperature T0. The corresponding nor-

malised boundary conditions are:

Vf � n � 0 and
ocs

on
� Scs

oT
on
� 0 through each wall;

T �z � 1� � Tc and T �z � 0� � Th;

oT
on
� 0 at x � 0 and x � L=H ;

8>>>>>><>>>>>>:
where n is the considered wall normal unit-vector.

3. Numerical method

The time discretisation scheme is semi-implicit:

buoyancy terms in Eq. (7) are explicitly treated.

An augmented Lagrangian method [31], based on the

Uzawa algorithm [32], is then used to solve the ¯uid ¯ow

Eqs. (7) and (9). The aim of this procedure is to ®nd a

pressure ®eld responsible for a velocity ®eld that veri®es

the incompressibility constraint: r � Vf � 0. The calcu-

lation will proceed in the following way:

Knowing pressure and velocity ®elds at a given

timestep (say n) L iterations:

1. Calculate V �n��l=L��
f using:

V �n��l=L��
f � rr r � V �n��l=L��

f

� �
� ÿrp�n��lÿ1�=L� � F: �12�

2. Calculate p�n��l=L�� using:

p�n��l=L�� � p�n��lÿ1�=L� ÿ nr � V �n��l=L��
f : �13�

3. If r � V �n��l=L��
f > e go back to 1

Convergence is reached when r � V �n��l=L��
f 6 e (say

for l � L, e being small).

The parameters r and n are chosen appropriately to

accelerate convergence: because we are operating with

normalised quantities, these parameters take values

close to 1. In Eq. (12), F stands for the buoyancy forces

at timestep (n). Once the ¯uid velocity is known at

timestep (n� 1), Eqs. (8) and (10) allow the computation

of the solute concentration and of the temperature at the

same timestep.

This method has two main advantages. First, it per-

mits the iterative solution of the velocity±pressure

coupling, which prevents us from having a large and ill-

conditioned matrix to solve. Second, there is no need for

a boundary condition on pressure. This procedure is

quite e�cient and has been successfully used by one of

the authors to solve ¯uid ¯ow in many di�erent prob-

lems [33±35]. A more detailed description of the aug-

mented Lagrangian method can be found there.

Spatial discretisation of these equations, based on a

central di�erence scheme, is performed on MAC grids:

temperature, pressure and concentration are evaluated

on main-grid nodes, while velocity components are cal-

culated on staggered grids. It is achieved using ®nite

volumes in accordance with the method described by

Patankar [36] for ¯uid ¯ow. The linear systems obtained

for velocity, temperature and concentration are solved

using a conjugated gradient method, BiCGStab [37].

4. Results and discussion

4.1. Flow pattern and heat transfer

4.1.1. Flow analysis

We aim at modelling experiments achieved with

speci®c thermogravitational cells [6]. Their aspect ratio

is HA � L=H � 100. Due to the thermal gradient direc-

tion, the mixture undergoes convection. The window in

Fig. 2 shows the velocity pro®les across the cavity at half

the cell height, for di�erent thermal and solutal Rayleigh

numbers, when only one convection roll is observed. The

positive half of these pro®les is shown on a log scale in

the same diagram (the value is close to zero at the mid-

cell). Convection velocity is higher on the cell vertical

1288 L.B. Benano-Melly et al. / International Journal of Heat and Mass Transfer 44 (2001) 1285±1297



sides due to the boundary slip condition. This ®gure

shows that the solutal buoyancy force has negligible or

no e�ect on convection for solutal Rayleigh numbers

lower than 10ÿ1. This is due to the low value of the term

cs ÿ 1 in Eq. (9): cs ÿ 16 10ÿ2 for the thermal Rayleigh

numbers considered.

Combined solutal and thermal buoyancy forces. When

Ras is high enough, for positive Soret numbers, the

thermal and the solutal buoyancy forces combine their

actions to enhance convection: the higher the Rayleigh

numbers, the higher the convection velocity as shown in

Fig. 2 (a short explanation on Soret number in¯uence on

solutal buoyancy force is given in Section 4.2.1).

Counteracting solutal and thermal buoyancy forces.

For negative Soret numbers, the solutal buoyancy force

opposes to ¯ow and convection velocity is reduced. In

some cases, Ras can be so high that solutal buoyancy

force is dominant. Convection ¯ow can then change

direction or multiple-roll con®gurations can appear.

Fig. 3 shows Ras values for which transition occurs,

depending on Rat.

These results qualitatively agree with the Chock and

Li [18] and Zimmerman [19] linear stability analysis,

although a direct comparison is impossible because we

consider a ¯uid in porous medium. For a positive Soret

number (e.g. greater than its critical value) steady con-

vection occurs (region (I) in Fig. 3), whereas for a neg-

ative Soret number stable multiple convection rolls can

develop (region (III) in Fig. 3). In addition to this, the

numerical results show that the ¯ow patterns developing

within the cavity, when the Soret number is negative,

depend strongly on the thermal and solutal Rayleigh

numbers: steady convection can occur with one roll

(region (II) in Fig. 3). Finally, unsteady convection has

been obtained for higher Rayleigh numbers, which

means that the Soret number considered is lower than its

critical value.

For the case we are interested in, ¯ow rapidly or-

ganises and reaches steady state. Only one convective-

roll ¯ow pattern can exist: we are modeling phenomena

occurring at low thermal and solutal Rayleigh numbers,

which prevents us from observing several convection

rolls within the cell, as shown in Fig. 3.

4.1.2. Heat transfer

For the Rayleigh numbers we are considering, ther-

mal and solutal buoyancy forces have no noticeable ef-

fect on heat transfer. Hence, as for convection, heat

transfer rapidly reaches steady state. According to

Bergman and Srinivasan [20], it quickly becomes con-

duction dominated (for the range of Rayleigh numbers

we have considered, the thermal Peclet number is very

low compared to 1). The temperature gradient across the

cell is horizontal and dimensionless temperature linearly

varies from 0:5 on the hot side to ÿ0:5 on the cold side.

4.2. Mass transfer

As explained in Section 1, a discrepancy has been

observed between numerical and experimental results

when modeling thermogravitational experiments [30].

Therefore, we propose a short study of the combined

in¯uence of buoyancy forces and Soret e�ect on solute

migration and distribution at steady state. However,

because Section 4.1.1 shows that only one convection

roll develops in the thermogravitational cells under in-

vestigation, we restrict our analysis to phenomena oc-

curring in region (I) and (II) of Fig. 3. In addition, on

Fig. 3. Critical solutal Rayleigh numbers for which di�erent

¯ow patterns develop. Steamlines are shown for each ¯ow re-

gion: (I) thermal buoyancy force is dominant, (II) solutal

buoyancy force is domininant, (III) multiple convection rolls

region.

Fig. 2. Convection velocity pro®les (window shows pro®les on

a cartesian scale):� �0; 10ÿ3; 1:2� 10ÿ3�, � �0;10ÿ2;1:2�10ÿ3�,
} �0;10ÿ1;1:2�10ÿ3�, M �10ÿ1;10ÿ3;ÿ1:2�10ÿ3�, / �10ÿ0:5;

10ÿ3;1:2�10ÿ3�,O �10ÿ0:5;10ÿ3;ÿ1:2�10ÿ3�; where ��;�;�� are

values for �Ras;Rat;S�.
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the basis of theoretical developments, we exhibit the

relevant parameters to the maximum steady-state sep-

aration and compare this to numerical results, which

appears to be necessary in order to explain the discrep-

ancy with experimental results.

4.2.1. Species di�erentiation

Negligible solutal buoyancy force; positive Soret

number. Fig. 4(a)±(f) shows the solute concentration

®eld for di�erent times during the separation process.

Originally homogeneous the di�erentiation progress-

ively develops in the mixture. Horizontal concentration

gradients appear ®rst. Initially located close to the ver-

tical walls (Fig. 4(a)), concentration gradients advance

towards the cell centre (Fig. 4(b)). The gradient direction

is due to the predominant solute thermal di�usive ¯ux

over the convective ¯ux (early time convection velocity is

very low). The solute being the mixture heavy compo-

nent, it migrates towards the cold wall.

Convection velocity then progressively increases until

steady state is reached. Therefore, solute convective ¯ux

increases and species di�erentiation increases as well

(Fig. 4(b)±(e)), until solute di�usive, thermal di�usive

and convective ¯uxes balance each other, which corre-

sponds to steady state (Fig. 4(f)). This balance between

the di�erent forces is responsible for neither horizontal

nor vertical direction of the steady-state concentration

gradients.

Negligible solutal buoyancy force; negative Soret

number. In this case, primary solute migration changes:

under the in¯uence of the Soret e�ect, the solute moves

initially towards the hot side. Later in time during

the separation process, and in agreement with Weaver

and Viskanta [13], convection and thermal di�usion

combine their actions to induce accumulation on the cell

hot side.

Combined solutal and thermal buoyancy forces. As

previously shown, a positive Soret number induce pri-

mary (e.g. early times) solute migration towards the cold

cell wall (Fig. 4(a) and (b)). Term cs ÿ 1 in Eq. (9) is then

positive on the cold side and negative on the hot side. As

schematically shown in Fig. 5(a), solutal and thermal

Fig. 4. Evolution of solute concentration from early time (a) to steady state (f).
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buoyancy forces then combine their actions, and species

di�erentiation is predominant (Fig. 5(b)).

Counteracting solutal and thermal buoyancy forces.

Because negative Soret number induces primary solute

migration towards the hot cell wall, term cs ÿ 1 in Eq. (9)

is negative on the cold side and positive on the hot side

at early time. Solutal and thermal buoyancy forces then

have an opposing action (schematic view in Fig. 6(a))

and reduce species di�erentiation (Fig. 6(b)).

Note that, as shown in Fig. 6(b), solute then does not

necessarily accumulate on the hot cell side, even though

it is the mixture heavy component. This behaviour is

opposite to the observed situation when the Soret

number is negative and the solutal buoyancy force is

negligible. The cell side where solute accumulation takes

place depends on the direction of the convective ¯ow

when solute convective ¯ux is higher than the combined

action of di�usive and thermal di�usive ¯uxes.

This analysis con®rms that the solutal buoyancy

force, when non-negligible, can have an important e�ect

on steady-state solute di�erentiation, even when only

one convection roll develops in the cavity. However,

thanks to the ¯ow analysis, the thermal buoyancy force

in¯uence is the only one relevant to the phenomenon

occurring in the thermogravitational cell under investi-

gation.

4.2.2. Solute behaviour sensitivity to dimensionless

parameters

Simpli®ed theory. Neglecting the solutal buoyancy

force and assuming constant di�usion and thermal dif-

fusion coe�cients (regarding temperature and solute

concentration), low solute concentration, constant

thermal gradient within the cell, two-dimensional ¯ow

within the plane de®ned by the thermal gradient and the

cell axis, and neglecting end-wall e�ects, total mass

transport along axis x (see Fig. 1), mx, can be expressed

in the classical form of Furry et al. [10]:

mx � ÿHcs�1ÿ cs� ÿK
ocs

ox
: �14�

Steady-state solute concentration is then readily ex-

pressed, and the corresponding separation ratio, q, is

q � csB=�1ÿ csB�
csT=�1ÿ csT� � exp

HL

K

� �
; �15�

where subscripts T and B, respectively, stand for cell top

and cell bottom. For low solute concentration, q reduces

to the ratio csB over csT. H and K are transport

parameters for which Lorenz and Emery give an ex-

pression in porous medium [38,39]. These parameters

are functions of the permeability, k:

H �Ak and K � Bk2 � C;

where A, B, C are functions of cell and binary mixture

characteristics. Using the previous expressions for H
and K, Eq. (15) becomes:

ln�q� � ALk
Bk2 � C

: �16�

Putting Lorenz and Emery approximated values for

A, B, C in Eq. (16) and di�erentiating it with respect to

k, Estebe and Schott [40] show that an extremum

FtFs Ft Fs

Tc Th

S<0

V

(a) (b)

0.
99

93

1.
00

00

1.
00

08
1.

00
15

0.
99

85

Fig. 6. (a) Schematical view of the e�ect of the buoyancy forces

on mixture velocity for negative Soret number (F t: thermal

buoyancy force; F s: solutal buoyancy force). (b) Solute con-

centration isolines obtained for: Rat � 10ÿ3, Rat � 1,

S � ÿ1:2� 10ÿ3, HA � 100.

FtFs Ft Fs

Tc Th

S>0

V

1.0060

1.0030

1.0000

0.9970

0.9940

(a) (b)

Fig. 5. (a) Schematical view of the e�ect of the buoyancy forces

on mixture velocity for positive Soret number (F t: thermal

buoyancy force; F s: solutal buoyancy force). (b) Solute con-

centration isolines obtained for: Rat � 10ÿ3, Rat � 1,

S � 1:2� 10ÿ3, HA � 100.
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(maximum) value for the separation ratio, q � qm, exists

for the permeability value, k � km:

km � lDU
��������
120
p

gbDTHq
: �17�

The maximum separation ratio, qm, can then be ob-

tained for this optimum permeability. With some ap-

proximations on H and K expressions, one can write:

ln�qm� � StDT L
��������
120
p

24H
: �18�

In terms of dimensionless parameters, Eqs. (17) and (18)

respectively become:

Rat
m �

U
��������
120
p

Le
; �19�

ln�qm� � S
��������
120
p

24HA
: �20�

Numerical predictions. Varying the appropriate di-

mensionless numbers, numerical simulation results

qualitatively agree with theoretical predictions for solute

behaviour (Eqs. (19) and (20)).

Dimensionless Soret and Lewis numbers being ®xed,

the amplitude of separation mainly depends on the

thermal Rayleigh number. The closer Rat to Rat
m, the

higher the species di�erentiation. Fig. 7 shows numerical

results regarding steady-state separation ratio for dif-

ferent Rat, with S � 1:2� 10ÿ3 and Le � 680, the solutal

buoyancy force being negligible (Ras � 0).

As shown in Fig. 8, a decreasing Lewis number

induces a decreasing separation ratio: the higher the

species di�usion (e.g. Ds0
), the lower the species

di�erentiation. Species di�usion then tends to

homogenise the mixture. On the contrary, Fig. 8 also

shows that Soret e�ect tends to increase the separation,

and this agrees with Eq. (20).

As shown in Fig. 9, the optimum Rayleigh number

increases when Lewis number decreases. This qualita-

tively agrees with Eq. (19), but not quantitatively

(compare numerical and analytical curves shown in

Fig. 9). Note that optimum thermal Rayleigh number

value does not depend on thermal di�usion e�ect, but

only on di�usion (this has been veri®ed).

For a given mixture, the maximum separation ratio

obtainable depends on the cell aspect ratio (Eq. (20)).

This is shown in Fig. 10 in which the steady-state sep-

aration ratio is given for di�erent cell aspect ratios: the

larger the cell aspect ratio, the higher the di�erentiation.

Fig. 7. Numerical steady-state separation ratio for di�erent

thermal Rayleigh numbers �Ras � 0; S � 1:2� 10ÿ3; Le � 680;
HA � 100�.

Fig. 8. Steady-state separation ratio for di�erent Soret and

Lewis numbers �Ras � 0; Rat � 10ÿ3; S � 1:2� 10ÿ2;
HA � 100�.

Fig. 9. Optimum Rayleigh number for di�erent Lewis numbers

(Ras � 0; S � 1:2� 10ÿ2; HA � 100).
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Changing Soret number sign inverts the separation

process (Eq. (20)). This has been veri®ed when the sol-

utal buoyancy force is negligible, but if this force is of

some importance, it is no longer true. Even if the solute

is the mixture heavy component, it has been shown in

Fig. 6(b) that for a negative Soret number, its accumu-

lation can take place on the cold cell side.

According to Eq. (20), when the Soret number sign

changes, the ``amplitude'' of di�erentiation in the cell

remains the same: qm for S < 0 takes the value 1=qm for

S > 0, which implies that solute concentration ®eld is

inverted. This has only been veri®ed for negligible sol-

utal buoyancy force (Fig. 11, and it might not be true all

the time.

4.3. Comparison with experiments

4.3.1. Experimental procedure and results

Rather than developing in detail the experimental

procedure, our purpose is to present an overview of the

procedure: our principal goal is to model these exper-

iments.

Soret-number measurement experiments are done

using thermogravitational cells [6], originally developed

by Clusius and Dickel [27,28]. The apparatus is made of

a cylindrical cell. Inside there is an inner tube through

which hot water ¯ows. The cold cell wall is then the

external boundary. Both temperatures are kept constant

during the experiment. The porous medium is made of

an arti®cial corindon grains (Al2O3). Porosity and per-

meability are then accurately known for each exper-

iment, depending on the grain size and packing. Cell

height and length are, respectively: L � 0:4 m and

H � 0:004 m.

The ¯uid studied is water, for which composition is

given in Table 1: it can either be considered as the binary

mixture H16
2 O±HD16O or H16

2 O±H18
2 O, the solutes being,

respectively, HD16O or H18
2 O. Small ¯uid samples are

taken at the cell top and bottom using hypodermic

needles, so that (i) ¯ow is not disturbed, (ii) samples are

not contaminated, and (iii) the sample temperature is

identical and equal to T0: the composition di�erence

between cell top and bottom is then only due to thermo-

gravitation. Their composition is determined by

measuring isotopic abundance of deuterium or 18O using

mass spectrometry.

Soret number computation is based on Eqs. (17) and

(18). Because the optimum permeability is not known a

priori, Estebe and Schott [40] suggest performing l ex-

periments with l solid matrices (permeability kl). The

steady-state separation ratio for each experiment, ql, is

then experimentally known, and ql � f �log�kl�� can be

plotted. With this curve being a gaussian type curve (see

Eq. (16) and the numerical results in Fig. 7), we can

Fig. 11. Steady-state separation ratio for positive Soret number

and inverse of separation ratio for negative Soret number:

evolution along axis z. �Ras � 10ÿ5; Rat � 10ÿ3; Le � 680;

HA � 100�.

Table 1

Pure water composition

Component H16
2 O D16

2 O HD16O H18
2 O HD18O D18

2 O

Composition (%) 0.9973 0:243� 10ÿ7 0:1556� 10ÿ3 0.001979 0:309� 10ÿ6 0:482� 10ÿ10

Fig. 10. Steady-state separation ratio for di�erent cell aspect

ratios �Ras � 0; Rat � 10ÿ3; S � 1:2� 10ÿ2; Le � 680�.
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graphically determine the maximum separation ratio and

the corresponding permeability. The solute Soret number

is then calculated using Eq. (18). The more experiments,

the more accurate the Soret-number evaluation.

Several sets of experiments, corresponding to di�er-

ent temperature gradients, have been conducted. In the

following, we only consider the set corresponding to an

average temperature of 47.5°C. The solid±matrix and

mixture characteristics are given in Table 2. For each

set, the porous medium permeability is the only

parameter that varies from one experiment to another

(this is achieved by changing the corindon grain size to

make the porous medium). Accurate values for HD16O

and H18
2 O Soret numbers have been determined. Ex-

perimental results regarding optimum permeability,

corresponding steady-state separation ratio and Soret

coe�cients, are shown in Table 3, with the experimental

uncertainty regarding permeability and the correspond-

ing Soret number values.

4.3.2. Modeling the experiments

In order to model experiments by numerical means,

the water solutal expansion coe�cient, a � �1=qf0
�

�oqf=oc�s �T � , has to be known. Regarding the considered

solutes, the literature does not give any special value for

this number. We are therefore assuming a � 0: the water

density variations are negligible regarding solute con-

centration variations. The solutal Rayleigh number is

then Ras � 0 for both solutes.

To calculate the Lewis number, which is an impor-

tant parameter in the separation process (see Fig. 8),

mean-temperature equivalent thermal conductivity, keq
0 ,

has to be determined. In a two-phase system, say c and

d, assuming that one phase is continuous (say c), Max-

well's formula permits the computation the equivalent

thermal conductivity [41]:

keq � kc
3jÿ 2/c�jÿ 1�

3ÿ /c�jÿ 1� ; �21�

where j � kd=kc and /c is the relative volume of phase c.

Extreme values for keq then correspond to c contin-

uous and d continuous, respectively.

Water thermal conductivity at T0 � 47:5°C being

kwater � 0:64 W mÿ1 Kÿ1 (Handbook of Chemistry,

1976), keq
0 lies within the range:

2:89 W mÿ1 Kÿ16 keq
0 6 9:27 W mÿ1 Kÿ1:

For HD16O, the Lewis numbers corresponding to this

range of thermal conductivity are:

3346Le6 1073

(water heat capacity is 4:18005� 103 J gÿ1 Kÿ1 at T0).

Considering HD16O Soret number, the maximum sep-

aration ratio numerically obtained for this range of

Lewis numbers is close to the experimental one:

1:05586 qnum
m 6 1:0559:

Reading from Fig. 9 the optimum thermal Rayleigh

numbers corresponding to this range of Lewis numbers,

it is:

0:01076Rat
m6 0:0336:

It is then possible to back-calculate the numerical opti-

mum permeability, knum
m :

4:13� 10ÿ11 m26 knum
m 6 4:22� 10ÿ11 m2:

Experimental is then higher than the numerical op-

timum permeability (see Table 3).

Similar results are obtained when considering pure

water as the mixture H16
2 O±H18

2 O.

4.3.3. In¯uence of dispersion

Although the amplitude of di�erentiation is calcu-

lated well, the numerical model does not correctly pre-

dict optimum permeability values. Costes�eque [6]

noticed that such a theory presented drawback, and

Jamet et al. [30] also pointed out this problem when

using his numerical model. They tried [30] to explain the

Table 2

Experiment and mixture characteristics

Matrix Mixture

U (%) kAl2O3

�W mÿ1 Kÿ1�
DT
�°C�

b
�°Cÿ1�

l
(Pa s)

q
�kg mÿ3�

DHD16O

�m2 sÿ1�
DH18

2
O

�m2 sÿ1�
40 17.75 19 4:4� 10ÿ4 5:7� 10ÿ4 989.1 2:09� 10ÿ9 2:67� 10ÿ9

Table 3

Experimental results regarding Soret number measurements

km (m2) Dk qm S DS

HD16O 8:76� 10ÿ11 0:05� 10ÿ11 1.056 1:2� 10ÿ3 9:5� 10ÿ5

H18
2 O 8:96� 10ÿ11 0:05� 10ÿ11 1.041 8:9� 10ÿ4 9:5� 10ÿ5
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observed discrepancy by considering an anisotropic

porous medium. However, it did not have the expected

corrective e�ect. Later, Fargue et al. [42] proposed that a

dispersion phenomenon acts on the thermal coe�cient

Dt, compared with the well-known dispersion coe�cient

associated with the di�usion coe�cient in porous me-

dium.

We therefore propose a similar analysis for the ob-

served discrepancy. By means of homogenisation from

the pore scale to the macroscopic scale, Arquis and

Caltagirone [43] studied the in¯uence of dispersion on

species transport. For the porous media they considered,

they showed that dispersion can strongly a�ect mass

transport as a peak of the convection velocity magni-

tude. Species intrinsic di�usion coe�cients are therefore

no longer relevant to the problem and have to be up-

dated to take account of dispersion.

The solutal Peclet number is the relevant parameter

for dispersion e�ects on mass di�usion: Pes � ReSc,

where is the Reynolds, Re, and the Schmidt, Sc, num-

bers. For a given Reynolds number (Re � 7:25� 10ÿ3),

dependence of Ds and Dt
s on dispersion is shown in

Fig. 12 for a porous medium porosity equal to 0:75 and

a thermal Peclet number, Pet � 1:74� 10ÿ3. The higher

the Schmidt number, Sc � m=Ds0
, the higher the actual

di�usion and thermal di�usion coe�cients, respectively,

Dd and Dt
d (these numbers then include dispersion ef-

fects). As shown, e�ect of dispersion on mass di�usion

coe�cients can be strong.

For the mixtures we consider, the Schmidt numbers

are:

ScHD16O � 275:73 and ScH18
2

O � 215:84:

According to Fig. 12, values for the di�usion coe�cients

taking dispersion into account are Dd > Ds and Dt
d > Dt

s.

Considering this change in the di�usion coe�cient due

to dispersion, there is a new value for Le, lower than the

one obtained with Ds0. As shown in Fig. 9, optimum

Rayleigh number increases when Lewis number de-

creases. Therefore, taking dispersion into account, this

should allow us to obtain, by numerical calculations, the

experimental value for the optimum permeability.

Let us do the following calculations. Knowing the

experimental optimum permeability, the corresponding

experimental optimum Rayleigh number can be calcu-

lated. Assuming that this value is the one that should be

obtained by numerical calculations (if the dispersion was

correctly handled), it is possible to use the results re-

ported in Fig. 9 to obtain an evaluation for the Lewis

number. This procedure leads to:

LeHD16O � 328 and LeH18
2

O � 320:

Then, back-calculating the actual di�usion coe�cients

(for an average value of the equivalent thermal con-

ductivity):

D�
HD16O

� 4:48� 10ÿ9 m2 sÿ1 and

D�
H18

2
O
� 4:6� 10ÿ9 m2 sÿ1:

Using these di�usion±dispersion coe�cients to model

the experiments (e.g. the corresponding Lewis numbers),

good results are obtained, either for HDO or H18
2 O:

Fig. 13 shows numerical and experimental results for

both solutes. As expected, once mass di�usion is well

computed, the numerical model perfectly ®ts the ex-

perimental results.

However, one can put forward that the dispersion

e�ect on solute di�usion and thermaldi�usion is, ®rstly,

low for the Schmidt numbers corresponding to the

experiment and, secondly, similar on both di�usion

Fig. 12. Di�usion, D, and thermal di�usion, Dt, coe�cients as a

function of Schmidt number (from [43]).

Fig. 13. Numerical results obtained when considering disper-

sion phenomena. Symbols are for experimental results.
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phenomena, which do not correspond to the results

shown in Fig. 12. Actually, the results by Arquis and

Caltagirone [43] correspond to a higher porosity (75%

against 40%), a higher Reynolds number (7:35� 10ÿ3

against 4:30� 10ÿ3) and a higher thermal Peclet number

(7:25� 10ÿ3 against 1:74� 10ÿ3) than the experimental

ones. Therefore, for the experiment we model, disper-

sion is e�ective but has to be lower than the one shown

in Fig. 12: the di�usion coe�cients are increased by

115% for HDO and 75% for H18
2 O to obtain coe�cients

including dispersion e�ect.

5. Conclusions

Aiming at modeling thermogravitational exper-

iments, we have addressed the problem of thermal dif-

fusion in binary mixtures lying within a porous medium

(in a particular con®guration). Hence, we have ®rst

shown that multiple convection-roll ¯ow patterns can

develop when solutal and thermal buoyancy forces op-

pose each other, depending on the Soret number value.

Investigating solute behaviour, we can explain how

di�erentiation occurs depending on the previous forces,

and can show that generally accepted solute behaviour is

not necessarily veri®ed for counteracting forces (e.g.

negative Soret number when the solutal expansion co-

e�cient is positive). Achieving a sensitivity study, the

importance of cell aspect ratio, species interdi�usion and

permeability for separation process is shown, in quali-

tative agreement with the theory.

Finally, with the intention of reproducing the ther-

mogravitational experiments, we observe a discrepancy

between numerical and experimental results when eval-

uating the optimum permeability for solute separation.

We then show that dispersion can be responsible for this

phenomenon, and that it can strongly a�ect di�usive and

thermal-di�usive coe�cients.
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